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ABSTRACT

We present an approximate form for the weak lensing magnification distribution of standard candles,
valid for all cosmological models, with arbitrary matter distributions, over all redshifts. Our results are
based on a universal probability distribution function (UPDF), P (η), for the reduced convergence, η.
For a given cosmological model, the magnification probability distribution, P (µ), at redshift z is related
to the UPDF by P (µ) = P (η)/2 |κmin|, where η = 1 + (µ − 1)/(2|κmin|), and κmin (the minimum
convergence) can be directly computed from the cosmological parameters (Ωm and ΩΛ). We show that
the UPDF can be well approximated by a three-parameter stretched Gaussian distribution, where the
values of the three parameters depend only on ξη, the variance of η. In short, all possible weak lensing
probability distributions can be well approximated by a one-parameter family. We establish this family,
normalizing to the numerical ray-shooting results for a ΛCDM model by Wambsganss et al. (1997). Each
alternative cosmological model is then described by a single function ξη(z). We find that this method gives
P (µ) in excellent agreement with numerical ray-tracing and three-dimensional shear matrix calculations,
and provide numerical fits for three representative models (SCDM, ΛCDM, and OCDM). Our results
provide an easy, accurate, and efficient method to calculate the weak lensing magnification distribution
of standard candles, and should be useful in the analysis of future high-redshift supernova data.

Subject headings: cosmology: observations—cosmology: theory—gravitational lensing

1. introduction

The luminosity distance-redshift relations of cosmologi-
cal standard candles provide a powerful probe of the cos-
mological parameters H0, Ωm, and ΩΛ (Garnavich et al.
1998a; Perlmutter et al. 1999; Wang 2000b; Branch et al.
2001), as well as of the nature of the dark energy (Gar-
navich et al. 1998b; White 1998; Podariu & Ratra 2000;
Waga & Frieman 2000; Maor et al. 2001; Podariu, Nu-
gent, & Ratra 2001; Wang & Garnavich 2001; Wang &
Lovelace 2001; Kujat et al. 2002). At present, type Ia su-
pernovae (SNe Ia) are our best candidates for cosmological
standard candles (Phillips 1993; Riess, Press, & Kirshner
1995). The main systematic uncertainties of SNe Ia as cos-
mological standard candles are weak gravitational lensing
(Kantowski et al. 1995; Frieman 1997; Wambsganss et al.
1997; Holz 1998; Holz & Wald 1998; Wang 1999; Valageas
2000a,b; Munshi & Jain 2000; Barber et al. 2000; Premadi
et al. 2001), and luminosity evolution (Drell, Loredo, &
Wasserman 2000; Riess et al. 1999; Wang 2000b). Future
SN surveys (Wang 2000a, SNAP1) could yield thousands
of SNe Ia out to redshifts of a few. Since the effect of weak
lensing increases with redshift, the appropriate modeling
of the weak lensing of high-redshift SNe Ia will be impor-
tant in the correct interpretation of future data. In ad-
dition, with high statistics it may be possible to directly
measure the lensing distributions, and thereby infer prop-
erties of the dark matter (Metcalf & Silk 1999; Seljak &
Holz 1999).

In general, determining the magnification distributions

of standard candles due to weak lensing is a laborious
and time-consuming process, involving such techniques as
ray-tracing through N-body simulations or Monte-Carlo
approximations to inhomogeneous universes. Here we
present an easy, accurate, and efficient method to calcu-
late the weak lensing magnification distribution of stan-
dard candles, P (µ). Our method avails itself of a universal
probability distribution function (UPDF), P (η), which we
fit to a simple analytic form (normalized by the cosmolog-
ical N-body simulations of Wambsganss et al. (1997)). All
weak lensing magnification probability distributions, for
all cosmological models over all redshifts, can then be ap-
proximated by a one-parameter family of solutions. The
underlying fundamental parameter is ξη, the variance of
the reduced convergence, η. To determine the magnifica-
tion PDF for a given model it is thus sufficient to deter-
mine ξη(z) for that model. We demonstrate this method
with a number of examples, and provide fitting formulae
for three fiducial cosmologies (see Table 1).

Table 1
Three fiducial models

Model Ωm ΩΛ h σ8

SCDM 1.0 0.0 0.5 0.6
ΛCDM 0.3 0.7 0.7 0.9
OCDM 0.3 0.0 0.7 0.85

2. weak lensing of point sources

Due to the deflection of light by density fluctuations
along the line of sight, a source (at redshift zs) will be
magnified by a factor µ ≃ 1 + 2κ (the weak lensing limit),

1 see http://snap.lbl.gov
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where the convergence κ is given by (Bernardeau, Van
Waerbeke, & Mellier 1997; Kaiser 1998)

κ =
3

2
Ωm

∫ χs

0

dχ w(χ, χs) δ(χ), (1)

with

dχ =
cH−1

0 dz
√

ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3
,

w(χ, χs) =
H2

0

c2

D(χ)D(χs − χ)

D(χs)
(1 + z),

D(χ) =
cH−1

0
√

|Ωk|
sinn

(

√

|Ωk|χ
)

,

and where Ωk = 1 − Ωm − ΩΛ, and “sinn” is defined as
sinh if Ωk > 0, and sin if Ωk < 0. If Ωk = 0, the sinn and
Ωk’s disappear. The density contrast δ ≡ (ρ− ρ̄)/ρ̄. Since
ρ ≥ 0, there exists a minimum value of the convergence:

κmin = −
3

2
Ωm

∫ χs

0

dχ w(χ, χs). (2)

The minimum magnification is thus given by µmin =
1 + 2κmin.

Now we define (Valageas 2000a)

η ≡
µ − µmin

1 − µmin
= 1+

κ

|κmin|
=

∫ χs

0
dχ w(χ, χs) (ρ/ρ̄)
∫ χs

0 dχ w(χ, χs)
. (3)

Note that η is the average matter density relative to the
global mean, weighted by the gravitational lensing cross
section of a unit mass lens along the line of sight to
the source. This is the same as the direction-dependent
smoothness parameter introduced by Wang (1999) in the
weak lensing limit (Wang, in preparation).

The variance of η is given by (Valageas 2000a,b)

ξη =

∫ χs

0

dχ

(

w

Fs

)2

Iµ(χ), (4)

with

Fs =

∫ χs

0

dχ w(χ, χs),

Iµ(z) = π

∫

∞

0

dk

k

∆2(k, z)

k
W 2(Dkθ0),

where ∆2(k, z) = 4πk3P (k, z), k is the wavenumber, and
P (k, z) is the matter power spectrum. The window func-
tion W (Dkθ0) = 2J1(Dkθ0)/(Dkθ0) for smoothing angle
θ0. Here J1 is the Bessel function of order 1. Using the hi-
erarchical ansatz to model non-linear gravitational cluster-
ing (Balian & Schaeffer 1989), Valageas (2000a,b) showed
that

P (η) =

∫ i∞

−i∞

dy

2πiξη
e[ηy−φη(y)]/ξη , (5)

where φη(y) ≃
∫

∞

0 dx (1 − e−xy) h(x). The scaling func-
tion h(x) can be obtained from numerical simulations of
large scale structure. For x ≪ 1, h(x) ∝ xω−2 (Valageas
2000a), where ω is the scaling parameter. The uncertainty
in Eq.(5) comes primarily from the uncertainty in ω. We
found that the scaling function given by Valageas (2000a)
leads to large errors in P (η) for small ξη, making it less use-
ful for calculating P (µ) at higher redshifts. Although P (µ)
becomes increasingly broad as source redshift increases,

P (η) becomes increasingly narrow, since the universe be-
comes more smoothly distributed at high z (Wang 1999).

Fig. 1.—
√

ξη (for smoothing angle θ0 = 1′) and −κmin,
for the three cosmological models of Table 1.

3. the universal probability distribution

function

Munshi & Jain (2000) showed that P (η) is independent
of the background geometry of the universe, as can be
seen from equation (5): since weak lensing contributions
are dominated by a narrow range of the matter power
spectrum, the scaling function h(x) is independent of cos-
mological parameters, and hence P (η) has no explicit de-
pendence on cosmology (Munshi & Jain 2000). Thus the
cosmological dependence of P (η) enters entirely through
the variance, ξη. We can determine the functional form of
P (η|ξη) by fitting it to accurate calculations of P (µ) for
any cosmological model. The amplification distribution,
P (µ), for arbitrary alternative cosmological models can
then be found by computing the appropriate κmin [equa-
tion (2)] and ξη. Utilizing µ = 1 + 2|κmin|(η − 1) we find

P (µ) =
P (η|ξη)

2|κmin|
. (6)

We call P (η) the universal probability distribution func-
tion (UPDF), as this one-parameter family of solutions
underlies all weak lensing magnification PDFs for all cos-
mologies, at all redshifts. We expect our results to be valid
in the weak lensing limit, for κ . 0.2. In particular, the
PDFs derived using our formulae are not expected to have
accurate high magnification tails.

Figure 1 shows
√

ξη and −κmin computed using equa-
tions (4) and (2), for the three cosmological models from
Table 1. For illustration, we give accurate fitting formulae
in Table 2 for the curves in Figure 1.

Table 2
Fitting formulae for curves in Fig.1:

√

ξη =
∑

3

i=0
ai(5z)−i, −κmin =

∑

3

i=0
ai(z/5)i

a0 a1 a2 a3 a0 a1 a2 a3

SCDM .032 .986 −.452 .114 −.025 .667 .482 −.337
ΛCDM .021 1.384 −.642 .147 −.015 .280 .766 −.426
OCDM .032 1.761 −.648 .146 −.004 .121 .703 −.538
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Fig. 2.— The dependence of the three UPDF fitting pa-
rameters, as functions of

√

ξη. Data for a variety of different
models, over a range of redshift, is shown. In addition, best
fit curves to the Wambsganss et al. points are superposed (see
equation 8).

We extract the UPDF, P (η), from ray-tracing within
the large scale structure simulations of Wambsganss et al.
(1997). We then fit the UPDF to the stretched Gaussian
(Wang 1999):

P (η|ξη) = Cnorm exp

[

−

(

η − ηpeak

w ηq

)2
]

, (7)

where Cnorm, ηpeak, w, and q depend solely on ξη and are
independent of η. Note that although eq.(7) accurately de-
scribes the shape of the UPDF in the range of η which is
relevant to weak lensing, one must impose self-consistency
by restricting η ≤ ηmax, with ηmax chosen such that eq.(7)
gives the correct ξη. Typically, ηmax ∼ 3− 7 for 1 ≤ z ≤ 3
in a ΛCDM model. We find that 〈η〉 = 1 (hence 〈µ〉 = 1)
for η ≤ ηmax. This is because ηmax is sufficiently large
so that the contribution of the high η tail to the mean is
negligible. Cnorm(ξη) is a normalization constant, chosen
so that

∫ ηmax

0
P (η) dη = 1. Figure 2 shows ηpeak, w, and

q as functions of
√

ξη. The points denoted by crosses are
extracted from the numerical P (µ|z) by Wambsganss et al.
(1997) for a ΛCDM model with Ωm = 0.4, ΩΛ = 0.6; the
solid curves are (χ2 minimizing) best fits to the crosses:

ηpeak(ξη) = 1.002− 1.145

(

√

ξη

5

)

− 20.427

(

√

ξη

5

)2

,

w(ξη) = .028 + 3.952

(

√

ξη

5

)

− 1.262

(

√

ξη

5

)2

, (8)

q(ξη) = .702 + .509

(

1

5
√

ξη

)

+ .008

(

1

5
√

ξη

)2

.

The parameter ηpeak(ξη) indicates the average smooth-
ness of a universe; it increases with decreasing ξη (i.e., in-
creasing z) and approaches ηpeak(ξη) = 1 for ξη → 0. The

parameter w(ξη) indicates the width of the distribution in
the smoothness parameter η; it decreases with decreasing
ξη (i.e., increasing z). The ξη dependences of ηpeak(ξη) and
w(ξη) are as expected because as we look back to earlier
times, lines of sight sample more of the universe, and the
universe becomes smoother on average. The parameter
q(ξη) indicates the deviation of P (η|ξη) from Gaussianity
(which corresponds to q = 0).

4. comparison with other published results

The universal probability distribution function, P (η),
encapsulated in eqs. (7) and (8), can be used to deter-
mine the magnification probability distribution, P (µ), for
arbitrary cosmological models at arbitrary redshifts. For
each parameter and redshift, the single free parameter ξη

determines the full probability distribution.

Fig. 3.— The amplification probability distribution, P (µ),
derived from ray-tracing simulations by Munshi & Jain (2000)
(open symbols) for smoothing angle θ0 = 1′, source redshift
zs = 1, and the three cosmological models of Table 1, together
with P (µ) computed using our UPDF, with κmin and ξη com-
puted using equations (2) and (4).

Fig. 4.— The P (µ) from three-dimensional shear matrix
calculations of N-body simulations by Barber et al. (2000)
(circles) for a ΛCDM model with Ωm = 0.3, ΩΛ = 0.7 at source
redshifts zs = 3.6, 2, 1 (peaking from left to right), together
with P (µ) computed using our UPDF, with κmin computed
using equation (2) and ξη inferred from Table 4 of Barber et
al. (2000).

Figure 3 shows the P (µ) from ray-tracing simulations by
Munshi & Jain (2000) for smoothing angle θ0 = 1′, source
redshift zs = 1, and three cosmological models from Table
1, together with P (µ) computed using our UPDF for the
κmin and ξη computed using equations (2) and (4).

Figure 4 shows the P (µ) from three-dimensional shear
matrix calculations of N-body simulations by Barber et
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al. (2000) for a ΛCDM model with Ωm = 0.3, ΩΛ = 0.7
at source redshifts zs = 1, 2, 3.6, together with P (µ)
computed using our UPDF, with κmin computed using
equation (2) and ξη inferred from Table 4 of Barber et
al. (2000) [equation (4) was not used to compute ξη due
to our lack of knowledge of the smoothing angle θ0 that
corresponds to their results].

Our UPDF gives P (µ) in excellent agreement with N-
body calculations. To make this more apparent, we have
extracted P (η) from the P (µ) obtained via N-body calcu-
lations by Munshi & Jain (2000) and Barber et al. (2000),
and fitted them to the functional form of equation (7). The
resultant coefficients are plotted in Figure 2. There is very
good agreement in the peak location ηpeak(ξη) and width
indicator w(ξη), but larger scatter in the non-Gaussianity
indicator q(ξη) extracted from Munshi & Jain (2000) and
Barber et al. (2000). The latter may arise partly due
to the fact that in both cases we poorly resolve the non-
Gaussian tails, which are crucial to determining accurate
values of q. In addition, the weak lensing condition breaks
down for the high µ tails, which could be significant for
small ξη. Also plotted in Figure 2 are the coefficients ex-
tracted from fitting the analytically computed P (η) [see
Eq.(5)], following Munshi & Jain (2000), for the scaling
parameter ω = 0.3 ± 0.05. These P (η) have not been
tested for z > 1 (i.e., for small ξη), although the devia-
tions are expected to be small, since P (η) peaks close to
η = 1 at small ξη [see equation (7)].

Figure 2 also shows the P (η) coefficients extracted from
ray-tracing of randomly placed singular isothermal spheres
(SIS), following the prescription of Holz & Wald (1998), for
the three cosmological models of Table 1; these are in good
agreement with the fitted coefficients from Wambsganss et
al. (1997). We find that improved statistics leads to bet-
ter agreement between the q(ξη) from our ray-tracing of
randomly placed mass distributions and that from Wamb-
sganss et al. (1997), while having much less impact on
ηpeak(ξη) and w(ξη). This is as expected, since improved
statistics fills out the non-Gaussian tails of the P (µ).

5. summary and discussion

We have derived a simple and accurate method to com-
pute the weak lensing magnification distribution, P (µ), for

standard candles placed at any redshift in arbitrary cosmo-
logical models. We use a universal probability distribution
function (UPDF), P (η|ξη), which is independent of cosmo-
logical model; the dependence on cosmology entering only
through the variance, ξη, of the reduced convergence, η.
The UPDF is fit accurately by a 3-parameter stretched
Gaussian distribution [eq. (7)]. We give polynomial fitting
formulae [eq. (8)] for the three parameters ηpeak(ξη) (aver-
age smoothness), w(ξη) (smoothness variation), and q(ξη)
(non-Gaussianity), which we normalize to the N-body sim-
ulations of Wambsganss et al. (1997). The magnification
PDF, P (µ, z), can then be determined from the UPDF
using equation (6). We expect our results to be valid in
the weak lensing limit, for κ . 0.2. The extension of our
method to high magnifications will be presented elsewhere.

To test the robustness of this method, we have compared
our results against three alternate independent methods
(see Fig. 2). We find excellent agreement with: (1) the
N-body calculations of Munshi & Jain (2000) and Barber
et al. (2000), with some scatter in the non-Gaussianity
indicator q(ξη), which is consistent with the limited statis-
tics at low z (i.e., large ξη) of these N-body results and the
breaking down of the weak lensing condition at high µ, (2)
the analytical calculation [see equation (5)] following Mun-
shi & Jain (2000), where the latter has been verified by ray
tracing experiments, and (3) the ray-shooting of randomly
placed SIS mass distributions, following the prescription of
Holz & Wald (1998).

We expect these simple, universal forms for the weak
lensing distribution to be useful in addressing high red-
shift data, and in particular, in the analysis of results from
future supernova surveys.
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CAREER grant AST-0094335 (YW), NSF grant PHY99-
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